Structure of Calcium Bis(phosphoenolpyruvate) Dihydrate

By T. Lis
Instytut Chemii, Uniwersytet, 50-383 Wroclaw, Poland
and M. Kuczek
Wyższa Szkola Oficerska Wojsk Inżynieryjnych, 50-961 Wroclaw, Poland

(Received 7 September 1990; accepted 29 January 1991)

Abstract

Ca}^{2+} .2\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}_{6} \mathrm{P}\right)^{-} .2 \mathrm{H}_{2} \mathrm{O}, \quad M_{r}=410 \cdot 18\), triclinic, $\quad P \overline{1}, \quad a=5.424$ (4),$\quad b=5.594$ (6),$\quad c=$ 12.078 (9) $\AA, \quad \alpha=83.00(8), \quad \beta=85.73$ (6),$\quad \gamma=$ $85 \cdot 18(7)^{\circ}, V=361.7(6) \AA^{3}, Z=1, D_{m}=1.87, D_{x}=$ 1.883 (4) $\mathrm{g} \mathrm{cm}^{-3}, \quad$ Mo $K \alpha, \quad \lambda=0.71069 \AA, \quad \mu=$ $7.2 \mathrm{~cm}^{-1}, \quad F(000)=210, \quad T=302(2) \mathrm{K}$, final $R=$ 0.0307 for 1199 observed reflections. The Ca^{2+} ions occupy centres of symmetry and are six coordinated (by two water and four phosphate O atoms). Two terminal O atoms of each phosphate group bridge pairs of Ca atoms, thereby forming linear chains along \mathbf{b}. The $\mathrm{P}-\mathrm{O}-\mathrm{C}-\mathrm{C}$ (carboxyl) torsion angle is $163.8(5)^{\circ}$ and the phosphate ester $\mathrm{P}-\mathrm{O}$ bond length is $1.616(2) \AA$.

Introduction. We are currently investigating the crystal structures of phosphoenolpyruvate (PEP) salts and complexes (Weichsel \& Lis, 1990) to see how PEP geometries depend on protonation, on the cations present and on the solvent used during crystallization. As part of this study we now report the crystal structure of $\mathrm{Ca}(\mathrm{PEP})_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$.

Experimental. Clear plate-like crystals of the compound were grown from aqueous solutions containing $1: 1$ or $1: 2$ molar ratios of CaCl_{2} and phosphoenolpyruvic acid. D_{m} measured by flotation in $\mathrm{CCl}_{4} / \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}$ mixture. Weissenberg and oscillation photographs showed the crystals to be triclinic. A fragment of approximate dimensions $0.4 \times$ $0.25 \times 0.1 \mathrm{~mm}$ was cut from a larger crystal. Syntex $P 2_{1}$ diffractometer with graphite monochromator and Mo $K \alpha$ radiation were used for lattice parameters (15 reflections in range $18 \leq 2 \theta \leq 25^{\circ}$) and intensity measurements; $\omega-2 \theta$ scan technique. 2144 reflections [1627 with $I>3 \sigma(I)$] were collected below $\theta=27^{\circ} \quad(-6 \leq h \leq 2,-7 \leq k \leq 7, \quad-15 \leq l \leq 15)$. After each group of 50 reflections two standards were measured; variation $\pm 4 \% .428$ symmetryrelated reflections were averaged; $R_{\text {merge }}=0.018$. Scattering factors for $\mathrm{Ca}^{2+}, \mathrm{P}, \mathrm{O}, \mathrm{C}$ and H were from International Tables for X-ray Crystallography
(1974, Vol. IV); anomalous dispersion was included for all non-H atoms. The structure was solved by direct methods and refined on F by SHELX 76 (Sheldrick, 1976). The H atoms were found from a difference map and refined with constraints $d(\mathrm{O}-\mathrm{H})$ $=0.97, d(\mathrm{C}-\mathrm{H})=1.08 \AA$. Final refinement was performed using anisotropic thermal parameters (isotropic for H atoms). No absorption or extinction corrections. Final $R=0.0307, w R=0.0375$ for 1199 reflections with $I>3 \sigma(I)$ and 130 refined parameters, where $w=1 / \sigma^{2}\left(F_{o}\right)$; max. $\Delta / \sigma=0.05$. Residual electron density in final difference Fourier map within -0.38 and $0.34 \mathrm{e}^{-3}{ }^{-3}$.

Discussion. Final atomic parameters are listed in Table 1^{*} and principal interatomic distances, bond angles and torsion angles in Table 2. The structure of the phosphoenolpyruvate monoanion and the atomnumbering scheme are shown in Fig. 1 and the packing of the crystal in Fig. 2.

The Ca^{2+} ions are located at the centres of distorted octahedra formed by two water and four phosphate O atoms. These octahedra are doubly connected in the [010] direction by terminal phosphate O atoms, forming a linear polymer (Fig. 2) with a $\mathrm{Ca} \cdots \mathrm{Ca}$ distance of 5.594 (6) \AA. The $\mathrm{Ca}-\mathrm{O}$ (water) distances [$2 \cdot 451$ (3) \AA] lie in the normally observed range (Einspahr \& Bugg, 1980). The Ca-O (phosphate) distances are $2 \cdot 259$ (3) and $2 \cdot 326$ (3) \AA.

The enolpyruvate system is not quite planar. The angle between the carboxyl plane and that formed by the $C(2), C(3)$ and $O(4)$ atoms of $4.9(8)^{\circ}$ is intermediate between the corresponding values in the monopotassium salt $\left[0.7(7)^{\circ}\right]$ and in the orthorhombic form of the monocyclohexylammonium PEP salt [13.9 (9) ${ }^{\circ}$] (Weichsel \& Lis, 1991). The

[^0]Table 1. Final atomic parameters for calcium bis(phosphoenolpyruvate) dihydrate

$U_{\text {eq }}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}{ }^{*} a_{j}{ }^{*} \mathbf{a}_{i} . \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }} / U_{\text {iso }}\left(\AA^{2}\right)$
Ca	0.5	0.5	$0 \cdot 5$	$0 \cdot 0188$ (3)
P	$0 \cdot 24315$ (16)	1.03580 (12)	0.35311 (6)	0.0182 (2)
$\mathrm{O}(1)$	-0.0135 (5)	$1 \cdot 1276$ (4)	$0 \cdot 30442$ (19)	0.0282 (6)
$\mathrm{O}(2)$	0.2244 (5)	0.7810 (4)	$0 \cdot 40641$ (17)	0.0231 (6)
$\mathrm{O}(3)$	0.3353 (5)	1.2164 (4)	$0 \cdot 41623$ (17)	0.0271 (6)
$\mathrm{O}(4)$	0.4263 (5)	1.0010 (4)	$0 \cdot 24356$ (18)	0.0287 (6)
$\mathrm{O}(5)$	0.7995 (6)	$0 \cdot 8843$ (4)	$0 \cdot 10325$ (21)	0.0428 (7)
O(6)	0.8413 (6)	1.2707 (5)	0.03632 (23)	0.0484 (7)
$\mathrm{O}(7)$	0.8150 (5)	$0 \cdot 5832$ (4)	$0 \cdot 34696$ (18)	0.0256 (5)
C(1)	0.7332 (7)	$1 \cdot 1019$ (6)	$0 \cdot 10024$ (26)	0.0299 (8)
C(2)	0.5189 (7)	1-1899 (6)	$0 \cdot 17224$ (26)	0.0267 (7)
C(3)	0.4330 (8)	1.4187 (6)	$0 \cdot 16444$ (30)	0.0345 (9)
H(1)	-0.098 (10)	1.274 (6)	0.329 (5)	0.111 (21)
H(6)	0.981 (7)	$1 \cdot 198$ (9)	-0.006 (5)	$0 \cdot 120$ (23)
H(3)	0.267 (4)	1.484 (7)	$0 \cdot 210$ (3)	0.051 (12)
H(31)	0.534 (6)	1.541 (5)	0.105 (3)	0.032 (10)
H(7)	0.762 (9)	0.668 (7)	0.277 (2)	0.072 (15)
H(71)	0.931 (7)	0.656 (8)	$0 \cdot 388$ (4)	0.080 (17)

Table 2. Principal interatomic distances (\AA), interatomic angles $\left({ }^{\circ}\right)$, torsion angles $\left({ }^{\circ}\right)$ and hydrogenbonding data in calcium bis(phosphoenolpyruvate) dihydrate

$\mathrm{P}-\mathrm{O}(1) \quad 1.573$	1.573 (3)	$\mathrm{O}(4)-\mathrm{C}(2)$	1.383 (4)
$\mathrm{P}-\mathrm{O}(2) \quad 1.49$	1.499 (2)	$\mathrm{O}(5)-\mathrm{C}(1)$	1.237 (4)
$\mathrm{P}-\mathrm{O}(3) \quad 1.47$	$1 \cdot 477$ (2)	$\mathrm{O}(6)-\mathrm{C}(1)$	1.296 (4)
$\mathrm{P}-\mathrm{O}(4) \quad 1.616$	1.616 (2)	$\mathrm{C}(1)-\mathrm{C}(2)$	1.486 (5)
$\mathrm{C}(2)-\mathrm{C}(3) \quad 1.32$	$1 \cdot 320$ (5)	$\mathrm{Ca}-\mathrm{O}(2)$	$2 \cdot 326$ (3)
$\mathrm{Ca}-\mathrm{O}\left(3^{\prime}\right) \quad 2.25$	$2 \cdot 259$ (3)	$\mathrm{Ca}-\mathrm{O}(7)$	$2 \cdot 451$ (3)
$\mathrm{O}(1)-\mathrm{P}-\mathrm{O}(2)$	107.9 (2)	$\mathrm{O}(5)-\mathrm{C}(1)-\mathrm{O}(6)$	124.1 (4)
$\mathrm{O}(1)-\mathrm{P}-\mathrm{O}(3)$	111.4 (2)	$\mathrm{O}(5)-\mathrm{C}(1)-\mathrm{C}(2)$	121.4 (3)
$\mathrm{O}(1)-\mathrm{P}-\mathrm{O}(4)$	104.0 (2)	$\mathrm{O}(6)-\mathrm{C}(1)-\mathrm{C}(2$	114.5 (3)
$\mathrm{O}(2)-\mathrm{P}-\mathrm{O}(3)$	119.9 (2)	$\mathrm{O}(4)-\mathrm{C}(2)-\mathrm{C}(1)$	$110 \cdot 7$ (3)
$\mathrm{O}(2)-\mathrm{P}-\mathrm{O}(4)$	102.4 (2)	$\mathrm{O}(4)-\mathrm{C}(2)-\mathrm{C}(3)$	126.7 (4)
$\mathrm{O}(3)-\mathrm{P}-\mathrm{O}(4)$	$109 \cdot 8$ (2)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	122.5 (4)
$\mathrm{P}-\mathrm{O}(4)-\mathrm{C}(2)$	124.0 (3)	$\mathrm{O}(2)-\mathrm{Ca}-\mathrm{O}\left(3^{\prime}\right)$	87.0 (1)
$\mathrm{O}(2-\mathrm{Ca}-\mathrm{O}(7)$	89.2 (1)	$\mathrm{O}\left(3^{\prime}\right)-\mathrm{Ca}-\mathrm{O}(7)$	93.8 (1)
$\mathrm{P}-\mathrm{O}(2)-\mathrm{Ca}$	$133 \cdot 4$ (2)	$\mathrm{P}-\mathrm{O}(3)-\mathrm{Ca}^{\text {i }}$	$175 \cdot 0$ (2)
$\mathrm{P}-\mathrm{O}(1)-\mathrm{H}(1)$	118 (3)	$\mathrm{C}(1)-\mathrm{O}(6)-\mathrm{H}(6)$	109 (3)
$\mathrm{O}(1)-\mathrm{P}-\mathrm{O}(4)-\mathrm{C}(2)$	(2) 74.1 (5)	$\mathrm{P}-\mathrm{O}(4)-\mathrm{C}(2)-\mathrm{C}$	(1) $\quad 163.8(5)$
$\mathrm{O}(2)-\mathrm{P}-\mathrm{O}(4)-\mathrm{C}(2)$	(2) -173.6(5)	$\mathrm{P}-\mathrm{O}(4)-\mathrm{C}(2)-\mathrm{C}$	C(3) $\quad-17.4(7)$
$\mathrm{O}(3)-\mathrm{P}-\mathrm{O}(4)-\mathrm{C}(2)$	(2) -45.2 (5)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	- $\mathrm{O}(5)-174.7$ (7)
$\mathrm{O}(4)-\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(5)$	O(5) 4.2 (7)	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	-O(6) $\quad 5.6$ (8)
$\mathrm{O}(4)-\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(6)$	$\mathrm{O}(6)-175 \cdot 5$ (7)	$\mathrm{H}(1)-\mathrm{O}(1)-\mathrm{P}-\mathrm{O}$	(3) - 10 (4)
$\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$	$\mathrm{O} \cdots \mathrm{O}(\AA)$	$\mathrm{H} \cdots \mathrm{O}(\AA)$	$\mathrm{O}-\mathrm{H} \cdots \mathrm{O}\left({ }^{\circ}\right)$
$\mathrm{O}(1)-\mathrm{H}(1) \cdots \mathrm{O}\left(7^{\text {iii) }}\right.$	2.734 (3)	1.79 (4)	163 (5)
$\mathrm{O}(6)-\mathrm{H}(6) \cdots \mathrm{O}\left(5^{\prime \prime}\right)$	2.641 (5)	1.69 (5)	167 (5)
$\mathrm{O}(7)-\mathrm{H}(71) \cdots \mathrm{O}\left(2^{\prime}\right)$	2.741 (3)	1.83 (4)	155 (4)
$\mathrm{O}(7)-\mathrm{H}(7) \cdots \mathrm{O}(4)$	$3 \cdot 213$ (4)	2.51 (5)	129 (4)
$\mathrm{O}(7)-\mathrm{H}(7) \cdots \mathrm{O}(5)$	3.211 (4)	$2 \cdot 29$ (4)	158 (4)

Symmetry code: (i) $x, y-1, z$; (ii) $x, 1+y, z$; (iii) $x-1, y+1, z$; (iv) $2-x, 2-y,-z$; (v) $1+x, y, z$.
carboxylic hydroxyl group is trans planar to the ester $\mathrm{O}(4)$ atom as was observed earlier in other PEP salts crystallized from water solutions (Weichsel \& Lis, 1991). The $\mathrm{P}-\mathrm{O}$ (ester) and the enolic bond lengths [1.616 (2) and 1.383 (4) \AA] are in agreement with values in other PEP structures. All other bond lengths and angles do not differ significantly from those found in other monoionized PEP moieties. The
torsion angle $\mathrm{P}-\mathrm{O}(4)-\mathrm{C}(2)-\mathrm{C}(3)$, defining the phosphate group orientation with respect to the enolpyruvate system, is $-17.4(7)^{\circ}$. The values of this torsion angle in ten known crystals of PEP (Weichsel \& Lis, 1991) are in the $\pm 90^{\circ}$ range indicating flexibility about the enolic bond and suggesting also that the conformation about the enolic bond may depend both on the cation and on the solvent used in crystallization.

The hydrogen-bond distances and angles are listed in Table 2; the hydroxyl $\mathrm{O}(1)-\mathrm{H}(1)$ group is involved (as donor) with a water molecule and pairs of centrosymmetrically related carboxyl groups interact with each other in the usual way. Furthermore, the water $\mathrm{H}(71)$ atom forms a hydrogen bond with

Fig. 1. Molecular geometry and numbering scheme of the phosphoenolpyruvate monoanion in calcium bis(phosphoenolpyruvate) dihydrate.

Fig. 2. The packing arrangement. Dashed lines show strong hydrogen bonds.
the phosphate atom $\mathrm{O}(2)$ and the second $[\mathrm{H}(7)]$ water atom is used in weak bifurcated hydrogen bonds.

References

Einspahr, H. \& Bugg, C. E. (1980). Acta Cryst. B36, 264 271.

Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Weichsel, A. \& Lis, T. (1990). Acta Cryst. C46, 962-965.
Weichsel, A. \& Lis, T. (1991). In preparation. R.P. 10.

Acta Cryst. (1991). C47, 1600-1602

Synthesis and Structure of $\left[P\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}\right]_{4}\left[M_{2}\left(\mathrm{WSe}_{4}\right)_{4}\right](M=\mathbf{P b}, \mathbf{S n})$

By Ying-Jie Lu and James A. Ibers
Department of Chemistry, Northwestern University, Evanston, IL 60208, USA

(Received 28 August 1990; accepted 4 January 1991)

Abstract

Tetrakis(tetraphenylphosphonium) bis(μ -tetraselenidotungstato-Se, $\left.S e^{\prime}, \mu-S e^{\prime \prime}\right)$-bis[(tetra- selenidotungstato- $\mathrm{Se}, \mathrm{Se} e^{\prime}$)plumbate], $M_{r}=3770 \cdot 7$, triclinic, $\quad P \overline{1}, \quad a=12.963(1), \quad b=14.430(2), \quad c=$ $14.705(1) \AA, \quad \alpha=105.26(1), \quad \beta=99.88(1), \quad \gamma=$ $94.06(1)^{\circ}, V=2595(1) \AA^{3}, Z=1, D_{x}=2.40 \mathrm{~g} \mathrm{~cm}^{-3}$, $\lambda\left(\mathrm{Cu} K \alpha_{1}\right)=1.54056 \AA, \mu=218.0 \mathrm{~cm}^{-1}, \quad F(000)=$ 1673.5 (including anomalous dispersion), $T=153 \mathrm{~K}$, $R\left[\right.$ on F for $\left.F_{o}^{2}>3 \sigma\left(F_{o}^{2}\right)\right]=0.047, w R\left[\right.$ on F for $F_{o}^{2}>$ $\left.3 \sigma\left(F_{o}^{2}\right)\right]=0.048, R\left(F^{2}\right)=0.075, w R\left(F^{2}\right)=0.101$ for 10498 unique reflections, 7747 having $F_{o}^{2}>3 \sigma\left(F_{o}^{2}\right)$. The centrosymmetric $\left[\mathrm{Pb}_{2}\left(\mathrm{WSe}_{4}\right)_{4}\right]^{4-}$ ion is composed of two independent W atoms tetrahedrally coordinated by Se atoms and one independent Pb atom in a distorted octahedral coordination of Se atoms. Tetrakis(tetraphenylphosphonium) bis(μ-tetraselenidotungstato- $S e, S e^{\prime}, \mu$ - $S e^{\prime \prime}$)-bis [(tetra-selenidotungstato- $\mathrm{Se}, \mathrm{Se} e^{\prime}$ stannate $], \quad\left[\mathrm{PPh}_{4}\right]_{4}\left[\mathrm{Sn}_{2}-\right.$ $\left.\left(\mathrm{WSe}_{4}\right)_{4}\right]$, is isostructural with $\left[\mathrm{PPh}_{4}\right]_{4}\left[\left[\mathrm{~Pb}_{2}\left(\mathrm{WSe}_{4}\right)_{4}\right]\right.$, $M_{r}=3593.7, \quad$ triclinic, $\quad P \overline{1}, \quad a=12.981(3), \quad b=$ 14.412 (6), $\quad c=14.644$ (7) $\AA, \quad \alpha=105.26$ (4),$\quad \beta=$ 99.79 (3) $, \gamma=94.56(3)^{\circ}, V=2583(1) \AA^{3}, Z=1, D_{x}$ $=2.31 \mathrm{~g} \mathrm{~cm}^{-1}, \lambda\left(\mathrm{Cu} K \alpha_{1}\right)=1.54056 \AA, T=153 \mathrm{~K}$.

Introduction. The reaction of various divalent metal cations with the tetrathiometallates MoS_{4}^{2-} or WS_{4}^{2-} affords the bis(thiometallate) anions $\left[M^{\prime}\left(M S_{4}\right)_{2}\right]^{2-}$ ($M^{\prime}=\mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Pd}, \mathrm{Zn}$, etc., $M=\mathrm{Mo}, \mathrm{W}$) (Müller, Diemann, Jostes \& Bögge, 1981). In contrast, the reaction of Sn^{2+} with WS_{4}^{2-} affords $\left[\mathrm{Sn}_{2}\left(\mathrm{WS}_{4}\right)_{4}\right]^{4-}$ (Müller, Paulat-Böschen, Krebs \& Dornfeld, 1976).

Until quite recently, little related chemistry of the MoSe_{4}^{2-} and WSe_{4}^{2-} ions was known (Ansari \& Ibers, 1990). It was recently found that reaction of WSe_{4}^{2-} with Ni^{2+} affords not only $\left[\mathrm{Ni}\left(\mathrm{WSe}_{4}\right)_{2}\right]^{2-}$ \{analogous to $\left[\mathrm{Ni}\left(\mathrm{WS}_{4}\right)_{2}\right]^{2-}$ \} but also $\left[\mathrm{Ni}\left(\mathrm{Se}_{2}\right)-\right.$

0108-2701/91/081600-03\$03.00
$\left.\left(\mathrm{WSe}_{4}\right)\right]^{2-}$ for which there is no known sulfur analogue (Ansari, Chau, Mahler \& Ibers, 1989). Thus the chemistry of the soluble selenides need not parallel that of the sulfides. In the present study, the reactions of Pb^{2+} and Sn^{2+} with WSe_{4}^{2-} were investigated. These reactions afford the $\left[M_{2}\left(\mathrm{WSe}_{4}\right)_{4}\right]^{4-}(M=\mathrm{Pb}, \mathrm{Sn})$ species.

Experimental. All reactions were carried out under a dry dinitrogen atmosphere with the use of standard Schlenk techniques. Solvents were dried and distilled before use. $\left[\mathrm{PPh}_{4}\right]_{4}\left[M_{2}\left(\mathrm{WSe}_{4}\right)_{4}\right](M=\mathrm{Pb}, \mathrm{Sn})$ was prepared by the reaction in DMF of PbCl_{2} or SnCl_{2} with $\left[\mathrm{NH}_{4}\right]_{2}\left[\mathrm{WSe}_{4}\right]$ in the presence of $\left[\mathrm{PPh}_{4}\right] \mathrm{Br}$. The ${ }^{77} \mathrm{Se}$ NMR spectrum of a DMF solution of the Pb complex exhibits resonances at $\delta 1653,1563,964$, 938 and 894 (relative to $\mathrm{Me}_{2} \mathrm{Se}$ at $\delta 0$). These may be assigned to terminal W-Se at $\delta 1653$ and 1563 and bridging W-Se at $\delta 964,938$ and 894 (Wardle, Mahler, Chau \& Ibers, 1988). Such an assignment is consistent with a structure for an anion analogous to that of $\left[\mathrm{Sn}_{2}\left(\mathrm{WS}_{4}\right)_{4}\right]^{4-}$.

A tabular crystal $0.081 \times 0.139 \times 0.061 \mathrm{~mm}$ was mounted in the cold stream $(T=153 \mathrm{~K})$ of an Enraf-Nonius CAD-4 diffractometer. Cell constants were obtained from 23 reflections in the range $25<$ $\theta\left(\mathrm{Cu} K \alpha_{1}\right)<26^{\circ}$. Intensity data were collected by the $\omega-2 \theta$ technique in the range $3 \leq \theta\left(\mathrm{Cu} K \alpha_{1}\right) \leq 75^{\circ}$ $(-16 \leq h \leq 0,-18 \leq k \leq 18,-18 \leq l \leq 18)$. The basic scan speed was $4^{\circ} \mathrm{min}^{-1}$ in ω but reflections having ${F_{o}}^{2}<3 \sigma\left(F_{o}^{2}\right)$ were scanned more slowly up to a maximum time of 60 s . The scan range was 0.5° in ω below $K \alpha_{1}$ to 0.5° in ω above $K \alpha_{2}$. Six standards ($08 \overline{1}, 0 \overline{8} 1, \overline{6} \overline{4} 3, \overline{3} 08, \overline{6} 00, \overline{1} 01$) chosen from diverse regions of reciprocal space were monitored every 3 h during data collection and remained constant within
© 1991 International Union of Crystallography

[^0]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 53957 (9 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

